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YRMS1

YRMS1: Analysis, Applications and Approximation of Constrained
PDEs

A common and convenient way to model multi-component phenomena is to model the components separately
and to glue them together via coupling the variables at the interfaces. This approach, however, leads to con-
strained PDEs that are more often referred to as abstract DAEs or PDAEs and that require sophisticated
methods for their numerical and analytical treatment.

The speakers of our minisymposium reflect the broad application area of constrained PDEs and discuss difficul-
ties in the application side and recent advances in the analysis and the numerical approximation. The particular
talks will cover general theoretical aspects and applications in the modeling of elastodynamics, electromagnetics,
flow networks, and fluid dynamics.
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Stable and efficient simulation of hyperbolic PDAEs describing flow
networks

Christoph Huck1, Lennart Jansen2, Caren Tischendorf1
1Humboldt-University of Berlin,

2Heinrich-Heine-University Düsseldorf

We consider partial differential algebraic equation systems (PDAEs) that consist of hyperbolic PDEs of the
type

pt +Aqx = 0

qt +Bpx +G(q)q +H = 0

and are coupled via algebraic boundary conditions. Such systems appear in the modeling of flow networks as
e.g. water or gas supplying networks [1]. For our simulation approach we use the method of lines, yielding a
differential algebraic equation (DAE) which is adaptively discretized in time.

We present a perturbation analysis for a simple prototype for different variants of space discretizations. In
particular we show that the index of the resulting DAEs may depend on the chosen space discretization.

Additionally, we present a network topology dependent space discretization guaranteeing DAEs of index 1.
Furthermore we study a network topological procedure to reduce the resulting DAEs into semi-explicit systems
of the form

x′ = f(x, t)

y = Mx+ r(t).

that can be exploited for more efficient simulations, e.g. by use of model order reduction or exponential inte-
grators.

References
[1] L. Jansen, C. Tischendorf. A unified (P)DAE modeling approach for flow networks. In Progress in

Differential-Algebraic Equations. Differential-Algebraic Equations Forum, 127-151. Springer Berlin Heidel-
berg, 2014.
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Stochastic Modeling and Regularity of the Nonlinear
Elliptic-Parabolic Magnetoquasistatic Equation

Ulrich Römer, Sebastian Schöps
Institut für Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt
Graduate School of Computational Engineering, Technische Universitaet Darmstadt

Simulation predictions with increased reliability can be realized by taking into account uncertainties in the
inputs of mathematical models. In this contribution we are concerned with the nonlinear elliptic-parabolic
magnetoquasistatic equation

σ∂t ~A+∇×
(
ν(|∇ × ~A|)∇× ~A

)
= ~J, (1)

with uncertainties, where ~A and ~J represent the magnetic vector potential and source current density, respec-
tively. This model, which is important for magnetic devices such as electrical machines or magnets, is elliptic
in the non-conducting air part and parabolic in the conducting iron part. Its numerical approximation by the
finite element method leads to a system of differential-algebraic equations [1] of index one or possibly higher
for a coupling to external circuits. Here, we are concerned with uncertainties in the material properties ν ex-
pressing the magnetic iron properties. To this end a stochastic/parametric model is proposed and analyzed. In
particular we discuss the modeling of randomness in ν in the presence of a monotonicity constraint. Also an
efficient spline-based discretization of the random input by the Karhunen-Loève expansion is presented. The
stochastic model has a high-dimensional deterministic counter-part

σ∂t ~A(~y) +∇×
(
ν(~y, |∇ × ~A(~y)|)∇× ~A(~y)

)
= ~J, (2)

with parameter vector ~y ∈ Γ ⊂ RM . Its efficient numerical approximation is a challenging task. A particularly
appealing method is based on stochastic collocation [2] as it features a rapid convergence rate and results in the
repetitive solution of deterministic problems. Although this technique is well-established in practice, a priori
estimates of the collocation error of system (1) are the subject of ongoing work. Starting from a regularity
analysis for the uncoupled elliptic system [3] yielding an algebraic convergence rate of p−k for tensor product
collocation of polynomial degree p, possible extensions to the case of a field-circuit coupling and to the time-
transient case will be addressed. The result is confirmed by academic and engineering benchmark examples.

References
[1] A. Nicolet, F. Delincé. Implicit Runge-Kutta Methods for Transient Magnetic Field Computation. IEEE

Transactions on Magnetics 32 (1996), 1405-1408.

[2] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential
equations with random input data. SIAM review 52 (2010), 317-355.

[3] U. Römer, S. Schöps, and T. Weiland. Stochastic Modeling and Regularity of the Nonlinear Elliptic curl-curl
Equation. Submitted manuscript.
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Hydrodynamic force elements: A PDAE approach

Robert Fiedler, Martin Arnold
Martin-Luther-University Halle-Wittenberg

The simulation of mechanical systems results often in multi-component phenomena with different time
scales or different solution strategies which influence each others problem characteristics. In our case we have a
flexible multibody system coupled with special force elements. The modelling of elastohydrodynamic bearings
in combustion engines leads to a coupled system of partial differential algebraic equations, which is represented
by a flexible multibody system model of crankshaft and bearing and by the Reynolds equation that describes
the non-linear effects in the fluid film. The hydrodynamic forces depend strongly on the position and the elastic
deformation of crankshaft and bearing shell therefore a fine spatial discretisation is needed.

The influence of the spatial discretisation on accuracy and numerical effort will be discussed. Since a fine
one substantially slows down the numerical solution, we propose an asymptotic analysis with methods from
singular perturbation theory to speed-up time integration. The interplay of this semi-analytical approach with
index reduction techniques for the multibody part is studied for the fourbar test problem.

Numerical tests for a realistic benchmark problem illustrate the advantages of this approach.

YRMS1 Monday, March 23 17:30-18:00 (Leandro 2 Room) Fiedler
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The Pressure Manifold in the Unsteady Navier-Stokes Equation and
in Semi-Discretizations

Jan Heiland
Max-Planck Institute for Complex Dynamical Systems Magdeburg, Germany

The right treatment of the pressure p is key in stable approximation schemes for time dependent Navier-
Stokes equations.

v̇ + (v · ∇)v +∇p− ν∆v = f, (1a)
div v = 0, in Ω× (0, T ). (1b)

A discrete approximation to (1) is typically given as

Mv̇k −A(vk)− JT
k pk = fk, (2a)
Jkvk = 0, in (0, T ), (2b)

i.e. the spatial component in (1) is discretized by approximating v(t) and p(t) via finite-dimensional vectors
vk(t) and pk(t),

Commonly used methods like projection or pressure correction schemes for the time discretization of (2)
base on the repeated solution of the so called Pressure Poisson Equation:

−JkM−1JT
k pk = JkM

−1f + JkM
−1A(vk). (3)

For stable discretization schemes, the discrete Pressure Poisson Equation is well defined for (2), which may
not be the case for the corresponding continuous equation (1).

In my talk, I will discuss a decoupling of the Navier-Stokes equations by means of a continuous Pressure
Poisson Equation that is in line with the schemes for the semi-discrete approximations.

YRMS1 Monday, March 23 18:00-18:30 (Leandro 2 Room) Heiland
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