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S17

S17: Applied and numerical linear algebra

The aim of this section is to bring together experts in the field of applied and numerical linear algebra, discussing
recent theoretical and algorithmic developments.
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Designing rational filter functions for solving eigenvalue problems
by contour integration

Marc Van Barel
Department of Computer Science, KU Leuven, Belgium

In this talk, the following eigenvalue problem is considered. Given an integer m ≥ 1, a domain Ω ⊂ C and a
matrix-valued function T : Ω → Cm×m analytic in Ω, we want to compute the values λ ∈ Ω (eigenvalues) and
v ∈ Cm, v 6= 0 (eigenvectors) such that

T (λ)v = 0.

Note that this formulation reduces to the linear eigenvalue problem in case T (z) = A − zB, and to the
polynomial eigenvalue problem when T (z) is a polynomial matrix. If the problem size m is equal to 1, then the
problem reduces to that of computing all the zeros λ of the analytic scalar function T inside the domain Ω.

The number of eigenvalues could be large, e.g., when m is large, or in case of a polynomial eigenvalue
problem when the degree of the polynomial matrix is large. In several applications, one is not interested in
all eigenvalues but only in those lying in a certain region(s) of the complex plane. Therefore, we can reduce
the original problem of finding all eigenvalues into one where we are only interested in those eigenvalues (and
corresponding eigenvectors) lying within (or in the neighborhood) of a given closed contour Γ ⊂ Ω.

The approach discussed in this talk is based on (numerical approximations of) contour integrals of the
resolvent operator T (z)−1 applied to a rectangular matrix V̂ :

1

2πi

∫

Γ

f(z)T (z)−1V̂ dz ∈ Cm×q

where f : Ω→ C is analytic in Ω and V̂ ∈ Cm×q is a matrix chosen randomly or in another specified way, with
q ≤ m.

The contour integral is approximated by a quadrature rule with nodes tj and corresponding weights uj , i.e.,

∫

Γ

f(z)dz ≈
N∑

j=1

ujf(tj).

As was explained in [1], from Keldysh’ theorem, we know that the resolvent function T (z)−1 can be written
(for simple eigenvalues λ) as

T (z)−1 =
∑

k

vkw
H
k

1

z − λk
+R(z)

with R(z) an analytic function where T (z) is analytic. Note that if T−1 is a matrix-valued strictly proper
rational function, the analytic function R is equal to zero. This is the case, for example, if T (z) = A− zB with
B nonsingular or if T (z) is a matrix polynomial in z with nonsingular highest degree coefficient.

Hence, applying the quadrature rule on the moments of the resolvent function zlT (z)−1 gives us

∫

Γ

zlT (z)−1dz ≈
N∑

j=1

ujt
l
jT (tj)

−1

=
∑

k

vkw
H
k

N∑

j=1

ujt
l
j

tj − λk
+

N∑

j=1

ujt
l
jR(tj).

The filter functions bl(z) are defined as the rational functions of degree δ corresponding to the quadrature rule
as follows

bl(z) =

N∑

j=1

ujt
l
j

tj − z
.

In [2], we argued that it is important to have robust and cheap ways to design good filter functions. This design
consists in finding the weights uj and the nodes tj such that the following conditions are satisfied:

S17 Wednesday, March 25 14:00-14:40 (Caravaggio 3 Room) Van Barel
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1. bl(z) = b0(z)zl;

2. |bl(z)| is large inside Γ and small outside Γ;

3. |∑N
j=1 ujt

l
jR(tj)| is small.

We call the function b0(z) “the filter function” and denote it as b(z). It is easy to see that as long as l+ ν < N
with ν the degree of the numerator of the filter function b(z), the first condition is satisfied. To satisfy the
second and third condition, we will solve an optimization problem looking for the variables uj and tj such that
|bl(z)| is large inside Γ and small outside Γ. The validity of the approach will be illustrated by some numerical
experiments.

References
[1] W.-J. Beyn. An integral method for solving nonlinear eigenvalue problems. Linear Algebra and its Applica-

tions, 436:3839–3863, 2012.

[2] M. Van Barel and P. Kravanja. Nonlinear eigenvalue problems and contour integrals. Technical Report
TW656, Department of Computer Science, KU Leuven, October 2014.

S17 Wednesday, March 25 14:00-14:40 (Caravaggio 3 Room) Van Barel

GAMM 2015 7



Parallel Bidiagonal SVD via the Method of
Multiple Relatively Robust Representations

Jan Winkelmann, Paolo Bientinesi
RWTH Aachen

One of the central problems in numerical linear algebra is the computation of the singular value decomposition
(SVD) of a real bidiagonal matrix. One way to calculate the bidiagonal SVD is by reducing the problem to a
real symmetric tridiagonal eigenproblem. The state of the art eigensolver-based SVD method is the Divide and
Conquer SVD algorithm, with a run-time complexity of O(n3) in the worst case, and O(n2) in the best case. A
more modern eigensolver is the method of Multiple Relatively Robust Representations (MR3), which calculates
k eigenpairs with O(nk) operations in the worst case. A bidiagonal SVD solver based on MR3 promises to
be an improvement over the current state of the art by providing lower asymptotic runtime and the ability to
calculate a subset of singular triplets at reduced cost. Currently, no implementation is readily available that
uses MR3 as an SVD solver. We provide such a solver, adapted from of an existing MR3 implementation.

Using MR3 as a bidiagonal SVD solver in a numerically stable way is not a trivial task. Willems and
Lang [1] have presented a modification of MR3 that can be used to obtain bidiagonal SVDs in a numerically
stable manner. The approach uses MR3 on Golub-Kahan matrices. Unfortunately, this approach does not work
if MR3 is used in a black-box manner. The reason lies in the way the input matrix is represented internally
by the algorithm. MR3 uses LDL∗ factorizations to ensure accuracy of the results, and LDL∗ factorizations
of definite matrices provably guarantee high accuracy. As high accuracy is always desirable, black-box MR3

shifts the eigenvalue spectrum of the input matrix to be definite. However, this shift causes problems with the
quality of the extracted SVD later on. Willems and Lang solved this problem by avoiding the initial shifting of
the spectrum, thus guaranteeing the quality of the obtained SVD.

Indeed, shifting the eigenvalue spectrum of the input matrix is something MR3 does multiple times. Roughly
speaking, MR3 is similar to bisection and inverse iteration in a manner that guarantees the orthogonality of the
eigenvectors. This cannot be accomplished if some of the eigenvalues are clustered, that is, if they have small
relative distances. In MR3, clusters are broken by shifting the spectrum close to the clustered eigenvalues, as
this enlarges their relative distances. After the shift, the eigenpairs for the newly “unclustered” eigenvalues can
be calculated with high accuracy.

Our contribution consists of the following elements: We extended an existing MR3 eigensolver implemen-
tation (incidentally also by Willems) to be a bidiagonal SVD solver. We equipped our implementation with
shared-memory parallelism. Previous work has shown that MR3 can achieve a high degree of parallelism [2]. We
adopted the same task parallel approach. This entails the decomposition into three distinct tasks, (1) shifting
the spectrum to break clusters, (2) refinement and classification of the eigenvalues after a shift, and (3) calcu-
lating the eigenpair for eigenvalues with large relative distances. In this task we discuss the implementation of
our shared-memory parallel SVD solver and present results regarding runtime and the quality of the resulting
decomposition.

References
[1] P.R. Willems, B. Lang. The MR3-GK Algorithm for the Bidiagonal SVD. Electronic Transactions on Nu-

merical Analysis. (2012) Volume 39, 1-21.

[2] M. Petschow, E. Peise, P. Bientinesi. High-Performance Solvers for Dense Hermitian Eigenproblems. SIAM
Journal on Scientific Computing. (2013) Volume 35(1), pp. C1-C22.
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A Hessenberg reduction algorithm for diagonal plus low rank
matrices

Dario A. Bini, Leonardo Robol
University of Pisa

Scuola Normale Superiore, Pisa

We present an algorithm for Hessenberg reduction of matrices of the form A = D + UV ∗ where D is real
diagonal and U, V are in Cn×k. Examples of such problems may be encountered as a first step in the solution
of structured eigenvalue problems. Some classes of block companion matrices (see for example [1]) do have this
particular structure and thus may benefit from an efficient method for the computation of the Hessenberg form.

The algorithm uses a rank k generalization of the quasiseparable techniques developed in [4], obtaining an
asymptotic cost for the reduction of O(n2k) floating point operations. Other algorithms have been presented
in the literature, for example in [3] and [2]. Some of them do have an asymptotic cost in the rank that is cubic,
thus making them not effective when the rank k is bigger than n

1
3 . This can be an issue when dealing with

linearizations of matrix polynomials that often have a quasiseparable rank not negligible with respect to the
size of the problem. For this reason we focused our attention at obtaining a linear complexity in k.

We introduce some theoretical results on rank conservation that allow to sharply bound the quasiseparable
ranks of the matrices obtained at each step of the reduction and explicitly represent every matrix without
redundancy in the rank. More precisely, we provide an explicit representation of the trailing principal submatrix
of QjAQ

∗
j , the matrix obtained at the j-th step of the reduction. This representation can be used to compute

the unitary matrix Qj+1. Moreover, we discuss different representations for these intermediate matrices and
analyze the numerical stability of the approach. Some strategies are proposed in order to avoid cancellation in
the process with the purpose of increase its stability.

References
[1] Bini, Dario A., and Leonardo Robol. On a Class of Matrix Pencils Equivalent to a Given Matrix Polynomial.

arXiv preprint arXiv:1406.1025 (2014).

[2] Delvaux, Steven, and Marc Van Barel. A Hessenberg reduction algorithm for rank structured matrices.
SIAM Journal on Matrix Analysis and Applications 29.3 (2007): 895-926.

[3] Eidelman, Yuli, Israel Gohberg, and Luca Gemignani. On the fast reduction of a quasiseparable matrix to
Hessenberg and tridiagonal forms. Linear algebra and its applications 420.1 (2007): 86-101.

[4] Vandebril, Raf, Marc Van Barel, and Nicola Mastronardi. Matrix computations and semiseparable matrices:
linear systems. Vol. 1. JHU Press, 2010.
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An extended Hessenberg form for Hamiltonian matrices

Micol Ferranti1, Bruno Iannazzo2, Thomas Mach1, Raf Vandebril1
1Dept. of Computer Science, KU Leuven, Belgium

Dep2t. of Mathematics and Computer Science, Università degli studi di Perugia, Italy

The QR method is one of the most used algorithms to compute eigenvalues of medium sized matrices. It
is a two step method: the matrix is first transformed via unitary similarity transformations to a convenient
condensed form, whose eigenvalues are then computed via a suitable iterative method.

The typical generic condensed form is the well known Hessenberg form, see, e.g., [4]. However, when the
original matrix exhibits particular properties, the preservation of the structure through the whole procedure is
advisable. For this reason, some special formulations of the QR method have been developed for specific classes
of matrices (i.e., symmetric, unitary, etc.).

On the other hand, it has been shown in [3] that the classic Hessenberg form is not the only possible choice
as an intermediate condensed form. A much wider family of matrices can be used within a QR-like algorithm,
in order to achieve the same results. This family extends classes such as Hessenberg and Hessenberg-like, and
will be named extended Hessenberg form.

A Hamiltonian matrix is represented by

H =

[
A G
F −AH

]
∈ C2n×2n,

where F = FH and G = GH . The eigenvalues of a Hamiltonian matrix are symmetric with respect to the
imaginary axis. To preserve this symmetry within a QR algorithm, it would be desirable to work exclusively
with Hamiltonian matrices during the iterative process.

The generic Hessenberg form does not retain the Hamiltonian structure. Thus many attempts have been
made to design a suitable Hamiltonian condensed form, see, for example, [1, 2]. Until now, a Hamiltonian QR
algorithm has been found for matrices H whose bottom-left block F has rank 1 [1]. This algorithm makes use
of the so called Hamiltonian Hessenberg form.

In this talk we will show how the arguments presented in [3] can be adapted to the Hamiltonian context, in
order to derive a new Hamiltonian condensed form, which extends the classic Hamiltonian Hessenberg form.

References
[1] R. Byers. A Hamiltonian QR-algorithm. SIAM Journal on Scientific and Statistical Computation, 7(1):212-

229, 1986.

[2] C. C. Paige and C. F. Van Loan. A Schur decomposition for Hamiltonian matrices. Linear Algebra and its
applications, 41:11-32, 1981.

[3] R. Vandebril. Chasing bulges or rotations? A metamorphosis of the QR-algorithm. SIAM Journal on Matrix
Analysis and Applications, 32:217-247, 2011.

[4] D. S. Watkins. Francis’s algorithm. American Mathematical Monthly, 118:387-403,2011.
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Rank–revealing decomposition via block anti–triangular
factorization

Nicola Mastronardi, Paul Van Dooren
Istituto per le Applicazioni del Calcolo “M. Picone”, sede di Bari

Consiglio Nazionale delle Ricerche
Via G. Amendola, 122/D, I-70126 Bari, Italy

Catholic University of Louvain Department of Mathematical Engineering
Avenue Georges Lemaitre 4

B-1348 Louvain-la-Neuve, Belgium

An algorithm for computing the block anti–triangular (BAT) form of a symmetric matrix has been recently
introduced [1]. In particular, given a symmetric matrix A ∈ Rn×n, an orthogonal matrix Q ∈ Rn×n is sought
such that

A = QMQT =




0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W




}n0
}n1
}n2
}n1

with n0, n1 and n2 depending on the inertia of A. Moreover, Q ∈ Rn×n is an orthogonal matrix , Z ∈ Rn1×n2 ,
W ∈ Rn1×n1 are symmetric, Y ∈ Rn1×n1 is a nonsingular lower anti–triangular matrix and X ∈ Rn2×n2 is
symmetric definite.

It has been shown that the latter BAT factorization of a symmetric matrix can be efficiently updated/downdated
by a symmetric rank–one modification. Moreover, the updating of a matrix obtained appending to a BAT ma-
trix one more row and, symmetrically, a column, represents the kernel step of the algorithm described in [1]
and can be done in O(n2) floating point operations.

In this talk we will describe an algorithm that factorizes a symmetric matrix as the product QMQT , with
M in a rank–revealing BAT form, i.e., denoted by σi, i = 1, . . . , n, the singular values of M in a decreasing
order, and supposed σk � σk+1,

M =

[
M11 M12

MT
12 M22

]
, M11 ∈ R(n−k)×(n−k), M11 ∈ R(k×k, M12 ∈ Rk×(n−k),

with 0 ≤ k ≤ n, we have

cond(M11) ' σ1/σk and ‖M11‖2F + ‖M12‖2F ' σk+1 + · · ·+ σn.

Numerical results will be shown together with comparisons with existing algorithms for symmetric rank–
revealing factrorizations available in the literature [2].

References
[1] N. Mastronardi, P. Van Dooren. The antitriangular factorization of symmetric matrices, SIAM J. Matrix

Anal. Appl., 34 (2013), 173–196.

[2] P.C. Hansen, P.Y.Yalamov, Computing Symmetric Rank-Revealing Decompositions via Triangular Factor-
ization, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 443–458.

S17 Wednesday, March 25 15:40-16:00 (Caravaggio 3 Room) Mastronardi

GAMM 2015 11



On complex J-symmetric eigenproblems

Peter Benner1, Heike Faßbender2, Chao Yang3
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

2TU Braunschweig, Institut Computational Mathematics,
AG Numerik, Braunschweig, Germany

3Lawrence Berkeley National Laboratory, Computational Research Division, Berkely, USA

The eigenproblem HCx = λx for matrices

HC =

[
A C
D −AT

]
∈ C2n×2n, A, C = CT , D = DT ∈ Cn×n.

will be considered. Please note, that here XT denotes transposition, Y = XT , yij = xji, no matter whether X
is real or complex, while XH denotes conjugate transposition, Y = XH , yij = xji.

For
Jn =

[
0 In
−In 0

]
∈ R2n×2n, In ∈ Rn×n

we have
(HCJ)

T = HCJ.

Matrices HC are called complex-J-symmetric. The eigenvalues of HC display a symmetry: they appear in
pairs (λ,−λ). If x is the right eigenvector corresponding to λ, HCx = λx, than Jx is the left eigenvector
corresponding to the eigenvalue −λ of HC , (Jx)THC = −λ(Jx).

Any complex J-symmetric matrix X is said to be in structured Schur form if

X =

[
R B
0 −RT

]
, R,B = BT ∈ Cn×n,

where the nonzero eigenvalues of R either have positive real part or zero real part and positive imaginary part.
We will prove that for any complex J-symmetric matrix HC there exists a complex symplectic and unitary
matrix W ∈ C2n×2n

WTJW = J WHW = I,

such that WHHCW is in structured Schur form.
The most popular way to compute the standard Schur form of a general matrix is the QR algorithm. It is

tempting to derive a structured QR algorithm for transforming HC iteratively into structured Schur form. We
will discuss why this is not possible and suggest other methods to compute eigenvalues and eigenvectors of HC .

S17 Wednesday, March 25 16:30-17:10 (Caravaggio 3 Room) Fassbender
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Nonlinear eigenvalue problem expressed in Hermite basis

Heike Fassbender, Nikta Shayanfar
AG Numerik, Institut Computational Mathematics, Technische Universität Braunschweig

Polynomial eigenvalue problems have been used extensively in different areas of mechanics, such as machine
foundations, electronic model of metal strip, simplified nuclear power plant problem, acoustic wave problem,
Whipple bicycle model, etc. A comprehensive collection of the eigenvalue problems from models of real life as
well as structured ones is studied in [3]. The standard form of a polynomial eigenvalue problem is to find scalars
λ and nonzero vectors x such that they satisfy

P (λ)x = 0,

where P : C → Cn×n is a given matrix-valued polynomial of degree s as

P (λ) =

s∑

i=0

Piλ
i, Pi ∈ Cn×n, Ps 6= 0.

The variable λ ∈ C and the nonzero vector x ∈ Cn×1 are the sought eigenvalue and eigenvector, respectively.
The growing attention to the polynomial eigenvalue problems has created the necessity of studying lineariza-

tion, which is the standard computational approach to solving eigenvalue problems. One of the first papers
discussing the main idea is [4]. It is based on finding a linear matrix polynomial L(λ) such that the spectral
structure of this particular linearization reproduces that of a given matrix polynomial P (λ). More precisely,
the above equation is converted to L(λ)y = 0, where L(λ) is a larger size matrix polynomial with the same
spectral properties, specially same eigenvalues. Then it can be solved by standard techniques developed for
linear eigenvalue problems.

On checking the history of linearization, we find that linearization has been done in different bases, see [1]
among others. Actually, matrix polynomials expressed in other bases other than monomial, occur in many
applications. For instance, Bernstein basis appears in computer-aided geometric design. Legendre basis helps
solving the problems in partial differential equations with symmetries in the boundary conditions. Lagrange
polynomial interpolation is traditionally viewed as a tool for theoretical analysis, and [2] demonstrates several
advantages to computation in the Lagrange basis. Generalization of the Lagrange basis leads to the Hermite
interpolation problem. To satisfy functional or aesthetic criteria, designed objects often have to exactly match
prescribed data, such as a series of points and derivatives. This idea leads to the presentation of the Hermite
basis, for which the linearization has not been comprehensively studied in literature. This contribution presents
ideas of solving nonlinear eigenvalue problems in Hermite basis. We introduce a new linearization for an
eigenvalue problem in which the matrix polynomial is expressed in Hermite basis, and the property of strong
linearization is to be investigated. This linearization shows a reliable behavior and an acceptable accuracy in
comparison to the recent results in the literature.
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Backward error of polynomial eigenvalue problems solved by

linearization

Piers W. Lawrence1, Marc Van Barel2, Paul Van Dooren1

1Université Catholique de Louvain, Department of Mathematical Engineering
2KU Leuven, Department of Computer Science

It is commonplace in many application domains to utilize polynomial eigenvalue problems to model the
behaviour of physical systems. Many techniques exist to compute solutions of these polynomial eigenvalue
problems. One of the most frequently used techniques is linearization, in which the polynomial eigenvalue prob-
lem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable
eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable
solver such as the QZ algorithm. Such backward stable algorithms ensure that the computed eigenvalues and
eigenvectors of the linearization are exactly those of a nearby linear pencil, where the perturbations are bounded
in terms of the machine precision and the norms of the matrices defining the linearization. With respect to the
linearization, we may have solved a nearby problem, but we would also like to know if our computed solution
is the exact solution of a nearby polynomial eigenvalue problem.

Furthermore, there has recently been a steady increase in the number of distinct linearizations proposed
in the literature, depending mainly on the basis in which the polynomial eigenvalue problems are represented.
Certainly, the choice of basis can have a dramatic effect on the backward errors, as can the particular choice of
linearization. One of the objectives of this work is to develop a framework for analyzing different polynomial
bases and linearizations in a uniform way. Thus, we investigate a particular class of linearizations where the
polynomial coefficients are separated from the recurrence relations of the polynomial basis employed.

We use one-sided factorization to relate the linearization to the original polynomial in a very particular
way. Given a linearization L(λ) of a polynomial matrix P (λ), we find a one-sided factorization Φ(λ), such that
L(λ)Φ(λ) = P (λ)⊗ e1, where e1 is the first unit vector. Since the QZ algorithm computes the exact solution of
a slightly perturbed linearization, we investigate

(L(λ) + ∆L(λ))(Φ(λ) + ∆Φ(λ)) =

[
P (λ) + ∆P (λ)

0

]
, (1)

to first order. The perturbation ∆Φ(λ) to the one-sided factorization is chosen in order to maintain the structure
in the bottom of (1). For a given specific basis, we utilize the appropriate convolution matrices in order to
obtain upper bounds for the norm of the coefficients of the perturbation ∆P (λ).

For some specific polynomial bases and linearizations, we are able to formulate these upper bounds in a
simple way. Thus, we obtain the conditions under which the backward error of the solution of the polynomial
eigenvalue problems are small.
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IgA vs. FEA in the Spectral Approximation:
Symbol-Based Analysis

C. Garonia,b, T.J.R. Hughesc, C. Mannia, A. Realid, S. Serra-Capizzanob, H. Speleersa
aDepartment of Mathematics, University of Roma ‘Tor Vergata’

bDepartment of Science and High Technology, University of Insubria (Como, Italy)
cInstitute for Computational Engineering and Sciences, The University of Texas at Austin

dDepartment of Civil Engineering and Architecture, University of Pavia (Italy)

Isogeometric Analysis (IgA) was recently introduced by T.J.R. Hughes and his research team in order to
reduce the gap between Computer-Aided Design (CAD) and Finite Element Analysis (FEA). The main idea in
IgA is to use the same basis functions provided by CAD systems – usually, B-splines or NURBS – both in the
approximation of differential problems and in the description of the geometry of the related physical domains.

After its birth, IgA has gained a lot of attention because of its remarkable spectral approximation properties,
which make it superior to FEA. Considering for simplicity the 1D Laplacian eigenvalue problem

{
−u′′` = λ`u`, in (0, 1),
u`(0) = u`(1) = 0,

(1)

whose solutions are the pairs (λ`, u`) with λ` = ω2
` = (`π)2 and u`(x) = sin(`πx), ` = 1, 2, . . ., what has been

observed in the literature [8, 1, 7, 6] is the following.

• The spectrum {ω2
`,IgA, ` = 1, . . . , N} of p-degree IgA discretization matrices consists of a unique branch,

the so-called ‘acoustical branch’, which provides a good (and convergent) approximation of practically all
the exact eigenfrequencies {ω2

` , ` = 1, . . . , N}, except for few outliers.

• The spectrum {ω2
`,FEA, ` = 1, . . . , N} of p-degree FEA discretization matrices consists of p branches,

one ‘acoustical’ and p− 1 ‘optical’; only the acoustical branch provides a good approximation of the first
N/p eigenfrequencies {ω2

` , ` = 1, . . . , N/p}, whereas the other discrete eigenfrequencies ω2
`,FEA, ` > N/p,

related to the optical branches, are spurious and diverge with p.

It is then clear that the approximation of the spectrum of the underalying continuous operator – in this case,
the (negative) 1D Laplacian – is much better in the IgA case than in the FEA case. Similar observations also
holds for differential problems different from (1); see, e.g., [8].

In this contribution, we analyze the above phenomena through the theory of Generalized Locally Toeplitz
(GLT) sequences [9, 10] and the related notion of ‘spectral symbol’ [2] (see also [3, 4, 5]). The identification of
the symbol for both IgA and FEA matrices allows us to give a compact description of the asymptotic spectrum
of these matrices, and leads to a clean explanation of:

• the presence of a unique spectral branch, when the eigenvalue problem (1) is approximated by IgA;

• the appearance of p spectral branches when p-FEA is used instead of IgA.

More generally, the symbol-based analysis allows one to predict the existence of p − k branches when Ck-
continuous basis functions with any intermediate regularity 0 ≤ k ≤ p − 1, are used for the approximation of
(1). The latter prediction is confirmed by numerical experiments, an can be extended to the d-dimensional
setting through tensorization arguments [2, 4, 5].
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How to compute efficiently the Markovian Joint Spectral Radius?

A. Cicone, N. Guglielmi, V. Y. Protasov
Università degli Studi dell’Aquila

Moscow State University

Given a finite set of matrices F = {Ai}Ni=1, with Ai ∈ Cd × d, the Joint Spectral Radius (JSR) of F is given
by the generalization of the Gelfand’s formula for the spectral radius of a matrix i.e. limk→∞ supP∈Pk(F) ‖P‖1/k,
k ∈ N, where Pk(F) is the set of all possible products of length k of matrices in F . In recent works it has been
proved that the JSR can be computed exactly, under suitable and general conditions, using polytope norms,
see e.g. [1].

In some cases, however, not all the products are allowed, because the matrices in F are multiplied each
other following some Markovian law. Recently Kozyakin [2] showed that it is still possibile to compute Joint
Spectral Radius in the Markovian case as the classical JSR of a significantly higher dimensional set of matrices

F̂ =
{
Âi

}N

i=1
, with Âi ∈ CNd × Nd. This implies that the exact evaluation of the Markovian JSR can be

achieved in general using a polytope norm in CNd, which is a challenge task if N is large.
In this talk we address the question whether it is possible to reduce the computational complexity for the

calculation of the Markovian JSR showing that it is possible to transform the problem into the evaluation of N
polytope multinorms in Cd.

As an illustrative application we shall consider the zero–stability of variable stepsize 3–step BDF formulas.
2000 MSC : 15A18, 15A60, 65F15, 65F35
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On Krylov subspace methods for the time-fractional Schrödinger
equation

Roberto Garrappa, Igor Moret, Marina Popolizio
Università degli Studi di Bari

Università degli Studi di Trieste
Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Italy

Among the various applications of the numerical evaluation of matrix functions we recently addressed the
numerical solution of the time–fractional Schrödinger equation. This model is a fundamental topic in physics
and it differs from the classic Schrödinger equation since the time derivative is replaced by a fractional one,
according to the basic definition by Caputo [1]. Its numerical solution is far more difficult than the standard
case and it is still an open problem. The approach we discuss grounds on the possibility to express its solution
by means of the Mittag–Leffler (ML) function. Once a discretization is used for the spatial derivative, one
faces with the problem to compute this ML function with matrix arguments, usually of large dimension. An
additional difficulty is represented by the spectrum of the resulting operators since eigenvalues can belong to
the imaginary axis. We analyze the standard Krylov projection method and the Shift–and–Invert approach to
approximate this function; their convergence properties are discussed, together with related issues. Numerical
tests are presented to confirm the strength of the approach under investigation.
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Stability-Preserving Parametric Model Reduction by Matrix
Interpolation using Invariance Properties of Krylov Subspaces

Andreas Barthlen, Patrick Lang
Fraunhofer ITWM

With this contribution we present an idea, how one can guarantee preservation of asymptotic stability for
parametric model reduction by matrix interpolation for a linear time-invariant system Σ(p) = (In, A(p), B(p), C(p),
based on a procedure proposed in [1]. Parametric model order reduction in general has become a popular re-
search field over the past years, as using regular model reduction for every parameter choice is impractical, at
the very least though inefficient. For that purpose methods based on matrix interpolation in particular, intro-
duced e.g. in [2], have proven themselves to be quite useful. The basic idea is to choose a set of sampling points
p(i) over the parameter space and to use regular model reduction methods to locally reduce the system for the
chosen sampling points. The reduced parametric system can then be obtained by interpolating the matrices of
the reduced systems.

Unfortunately, without modification such an interpolation will in general yield meaningless results, let alone an
asymptotically stable system. A method to ensure stability was introduced in [1], where one computes matrices
Pi such that the original system Σi = Σ(p(i)) satisfies

PE > 0, PA + (PA)T < 0

which is a sufficient criteria for asymptotic stability. This criteria is preserved under one-sided model reduction
and interpolation with nonnegative weights and has been used e.g. in [3], where it is applied to the local
reduced systems. We show, that one can use the invariance of the input Krylov subspace under a nonsingular
transformation P to directly compute reduced systems Σi = (Er,i, Ar,i, Br,i, Cr,i) that satisfy the asymptotic
stability criteria

Er,i > 0, Ar,i + AT
r,i < 0

without explicitly computing the matrices Pi. This is not only less computationally expensive than explicitly
computing the transformation matrices Pi and subsequently transforming the original system, but additionally
gives us more freedom regarding the local reduced systems.
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Comparison of polynomial Krylov methods with limited memory
consumption for approximating Stieltjes matrix functions

Stefan Güttel∗, Marcel Schweitzer†
∗The University of Manchester
†Bergische Universität Wuppertal

Approximating f(A)b, the action of the matrix function f(A) on a vector b, is an important task in many
areas of scientific computing. Especially when A is large and sparse, iterative methods which extract their
approximations from a polynomial Krylov subspace Km(A,b) are the methods of choice in many applications.
One of the drawbacks of these methods is that the amount of reuired memory grows with the number of
iterations which are performed, as a full basis of Km(A,b) has to be stored. This often limits the feasible
number of iterations, in particular in large scale computations. In recent years, different approaches have been
employed for circumventing this problem, namely restarting approaches (which allow to only ever store a small,
fixed number of vectors at a time) and rational Krylov methods (which typically need far less iterations to find
an approximation of a certain accuracy than polynomial methods, but require solving a linear system in each
iteration).

In some applications, solving linear systems with A (or shifted versions of it) by direct methods is not feasible,
or A is only implicitly available via a routine, which, given a vector v, returns the matrix vector product Av.
In these cases, the linear system solves in each iteration of a rational Krylov method can only be performed
approximately by another iterative method. In case that A is Hermitian positive definite, a straight-forward
choice is the conjugate gradient method which only ever requires storing a fixed number of vectors throughout
all iterations. When the number of outer (rational) Krylov iterations needed for reaching the desired accuracy
is small, such inner-outer Krylov methods can also be interpreted as Krylov methods with limited memory
consumption, independent of the number of inner iterations.

Given these possible different approaches for approximating f(A)b in presence of limited available storage,
the natural question that arises is the following:

Given a limited amount of memory (storage of at most m vectors of length N), what is the
most efficent method to approximate f(A)b?

While “most efficient” can of course have several meanings, we will focus on finding the method which
requires the minimal number of matrix-vector products. For the case that f is a Stieltjes function, one can
estimate the asymptotic convergence factors of the different methods. These can then be used to give guidelines
for judging how well-suited which method is in a given situation. In addition, we compare these guidelines to
the performance observed in actual numerical computations for the different methods.

S17 Thursday, March 26 17:10-17:30 (Masaccio Room) Schweitzer

GAMM 2015 20



Orthogonal projection vs. Oblique projection in Krylov subspace
recycling

Matthias Bolten, Nemanja Božović, Andreas Frommer
Bergische Universität Wuppertal

Many problems in engineering, numerical simulations in physics etc. require the solution of long sequences of
slowly changing linear systems. The paper [1] proposes an algorithm that reduces the cost of solving subsequent
systems by recycling selected subspaces generated for the previous systems. The subspace which is to be
recycled is chosen in a way that the eigenvalues of smallest magnitude are approximately deflated. This can
substantially improve the convergence of the method. Their algorithm, called GCRO-DR, uses an orthogonal
projection for deflation. What we propose is an algorithm that uses an oblique projection in the spirit of [2] for
deflating the eigenvalues of smallest magnitude. This oblique projection requires approximations to right and
left eigenvectors, and we propose a way of getting the approximations to the left eigenvectors, without having to
build a Krylov subspace with respect to AH , which saves work. We will also show some numerical comparisons.
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A new approach for preconditioning discontinuous Galerkin
discretizations

Martin J. Gander, Soheil Hajian
University of Geneva

Domain decomposition preconditioners and in particular the additive Schwarz method are favorite precon-
ditioners for classical finite element methods (FEM). There is a huge effort in designing similar preconditioners
for discontinuous Galerkin (DG) discretizations. It has been shown that additive Schwarz methods use different
mechanism for convergence when applied to a DG discretization compared to the classical FEM. More precisely,
additive Schwarz methods, when applied to DG, use a non-overlapping Robin transmission condition for the
communication between subdomains. This is exactly the same transmission condition that optimized Schwarz
methods (OSM) use to obtain fast convergence. In this talk we present an OSM preconditioner for a particular
DG discretization along with theoretical convergence estimates.
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Rational least squares approximation via RKFIT

Mario Berljafa and Stefan Güttel
The University of Manchester

For given matrices {A,F} ⊂ CN×N and a vector v ∈ CN , we consider the problem of finding a rational
function R∗

m of type (m,m) such that

‖Fv −Rm(A)v‖22 is small.

We propose an iterative algorithm called RKFIT for its solution. At each iteration RKFIT constructs a rational
Krylov space and manipulates an associated Arnoldi decomposition to find better approximations to the poles
of R∗

m. In the special case when A and F are diagonal matrices, we can compare RKFIT to the popular vector
fitting algorithm by Gustavsen and Semlyen (1999).

RKFIT is part of a MATLAB Rational Krylov Toolbox available for download from

http://www.guettel.com/rktoolbox

S17 Thursday, March 26 18:10-18:30 (Masaccio Room) Güttel
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A fast nonstationary preconditioning strategy for ill-posed
problems, with application to image deblurring

Marco Donatelli
Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, 22100 Como, Italy.

We consider the iterative solution of ill-posed equations

Tx = y , (1)

where T : X → Y is a linear operator between two Hilbert spaces X and Y with unbounded (Moore-Penrose)
generalized inverse. Hence, problem (1) has to be regularized for a numerical solution. As usually often in the
applications, we assume that, instead of the exact data y ∈ Y of (1), we are only given approximate data yδ ∈ Y
with ‖yδ − y‖ ≤ δ , where δ ≥ 0 is the corresponding noise level.

When linear equations with T ∗T + αI or TT ∗ + αI, with α > 0, are computationally expensive to solve,
taking an appropriate approximation C of T the following algorithm has been proposed in [4]. Starting with
an initial guess x0 we compute, for n = 0, 1, 2, . . . ,

hn = C∗(CC∗ + αnI)
−1rn , rn = yδ − Txn , (2a)

and set
xn+1 = xn + hn . (2b)

Note that the linear equation (2a) is equivalent to minimizing the Tikhonov functional

‖Chn − rn‖2 + αn‖hn‖2 −→ min. (3)

over hn ∈ X , where C is the aforementioned approximation of T , and αn is the associated regularization
parameter.

In the literature on iterative solvers for (usually well-posed) problems of the form (1) the operator

P = C∗(CC∗ + αnI)
−1 (4)

in (2a) would be called preconditioner. As we will select different regularization parameters αn in each iteration,
it is therefore appropriate to call the new scheme (2) a nonstationary preconditioned iteration. We provide a
theoretical analysis of the new scheme, using regularization parameters that are chosen by a certain adaptive
strategy. On the other hand, the parameter sequence (αn)n could be also simply defined by the geometric
sequence

αn = αqn, n = 0, 1, 2, . . . , (5)

where α > 0 and 0 < q ≤ 1.
For image deblurring problems the matrix T has a structure depending on the boundary conditions and the

approximation C can be a discrete convolution operator that operates entirely in the Fourier domain. Hence
the matrix vector product with the preconditioner P in (4) can be computed by two fast Fourier transforms
(FFTs). The numerical performance of this method turns out to be superior to state of the art iterative methods
for least square problems, including the conjugate gradient iteration for the normal equation, with and without
additional preconditioning.

We discuss also possible improvements of the iteration (2). For instance the nonnegative constraint can
be easily enforced, preserving the convergence of the method, by simply projecting every iteration into the
nonnegative cone. Furthermore, other weighted norms could be used to define hn in (2a) in order to preserve
special features of the computed solution [1].

Regularization preconditioners can be used also inside recent thresholding iterative methods for image de-
blurring problems. We discuss the synthesis approach, but our proposal can be applied also to the analysis
approach. Thanks to the well-known property that every image has a sparse representation in the wavelet
domain, some recent deblurring models are based on a regularization term that promotes the sparsity of the
wavelets coefficients

x̂ =Wx,

S17 Friday, March 27 09:00-09:40 (Masaccio Room) Donatelli

GAMM 2015 24



where W defines the wavelet transform. For instance the regularized problem can be formulated in terms of
wavelets coefficients as

min
x̂
{µ‖x̂‖1 + ‖x̂‖22 : TWT x̂ = yδ}, (6)

where ‖ · ‖p denotes the p-norm, p ≥ 1, and µ > 0 is a regularization parameter to be chosen. The solution of
(6) can be computed by the linearized Bregman splitting that converges very slowly. Hence a preconditioning
strategy is usually employed, obtaining the modified linearized Bregman iteration based on a regularizing
preconditioner diagonalized by FFTs [3]. We show that this approach can provide low quality restored images
when appropriate boundary conditions are imposed to reduce possible boundary artifacts. Accordingly we
propose a new modified linearized Bregman iteration based on the preconditioner (4) that improves the quality
of the restoration and save some computational cost at the same time [2]. Similarly to (2) our simple iteration is

{
zn+1 = zn +WCT (CCT + αnI)

−1(yδ − TWT x̂n),
x̂n+1 = Sµ(zn+1),

where Sµ is the soft-thresholding function defined component-wise as

Sµ(ξ) = sgn(ξ) (|ξ| − µ)+ .

Some numerical experiments show that our proposed preconditioners provide accurate and fast restorations
when compared with the state of the art methods with sparsity constraints or total variation regularization.
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Iterated fractional Tikhonov regularization

Davide Bianchi, Alessandro Buccini, Marco Donatelli, Stefano Serra-Capizzano
Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, 22100 Como, Italy

We consider linear operator equations of the form

Kx = y , (1)

where K : X → Y is a compact linear operator between Hilbert spaces X and Y. We assume y to be attainable,
i.e., that problem (1) has a solution x† = K†y of minimal norm. Here K† denotes the (Moore-Penrose)
generalized inverse operator of K, which is unbounded when K is compact, with infinite dimensional range.
Hence problem (1) is ill-posed and has to be regularized in order to compute a numerical solution. We want to
approximate the solution x† of the equation (1), when only an approximation yδ of y is available with

‖yδ − y‖ ≤ δ,

where δ is called the noise level. Since K†yδ is not a good approximation of x†, we approximate x† with
xδα := Rαy

δ where {Rα} is a family of continuous operators depending on a parameter α. A classical example
is the Tikhonov regularization defined by Rα = (K∗K + αI)−1K∗, where I denotes the identity and K∗ the
adjoint of K.

Recently, new Tikhonov based regularization methods have been proposed in [1], [2] and [3], under the name
of fractional Tikhonov, to reduce the oversmoothing property of the Tikhonov regularization in standard form,
in order to preserve the details of the approximated solution. Their regularization and convergence properties
have been previously investigated showing that they are of optimal order.

In this talk, we firstly provide saturation results similar to the well-known saturation result for Tikhonov
regularization: let R(K) be the range of K and let Q be the orthogonal projector onto R(K), if

sup
{
‖xδα − x†‖ : ‖Q(y − yδ)‖ ≤ δ

}
= o(δ

2
3 ),

then x† = 0, as long as R(K) is not closed. Such results motivated us to introduce the iterated versions of
fractional Tikhonov methods in the same spirit of the iterated Tikhonov method. We prove that those iterated
methods can overcome the afore-mentioned saturation results.

Afterwards, inspired by the works [4, 5] we introduce the nonstationary variants of our iterated methods.
Differently from the nonstationary iterated Tikhonov, we have two nonstationary sequences of parameters. In
the noise free case, we give sufficient conditions on these sequences to guarantee the convergence providing
also the corresponding convergence rates. In the noise case, we show the stability of the proposed iterative
schemes proving that they are regularization methods. Finally, few selected examples confirm the previous
theoretical analysis, showing that a proper choice of the nonstationary sequences of parameters can provide
better restorations compared to the classical iterated Tikhonov.
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Spectral behavior of preconditioned non-Hermitian multilevel block
Toeplitz matrices with matrix-valued symbol

M. Donatelli, C. Garoni, M. Mazza, S. Serra-Capizzano, D. Sesana
University of Insubria,

Department of Science and High Technology, Via Valleggio 11, 22100 Como, Italy

This contribution is devoted to preconditioning strategies for non-Hermitian multilevel block Toeplitz linear
systems associated with a multivariate Lebesgue integrable matrix-valued symbol. In particular, we consider
special preconditioned matrices, where the preconditioner has a band multilevel block Toeplitz structure, and
we complement known results on the localization of the spectrum with global distribution results for the eigen-
values of the preconditioned matrices. In this respect, our main result is as follows. Let Ik := (−π, π)k, let
Ms be the linear space of complex s × s matrices, and let f, g : Ik → Ms be functions whose components
fij , gij : Ik → C, i, j = 1, . . . , s, belong to L∞. Consider the matrices T−1n (g)Tn(f), where n := (n1, . . . , nk)
varies in Nk and Tn(f), Tn(g) are the multilevel block Toeplitz matrices of size n1 · · ·nks generated by f, g.
Then {T−1n (g)Tn(f)}n∈Nk ∼λ g−1f , i.e. the family of matrices {T−1n (g)Tn(f)}n∈Nk has a global (asymptotic)
spectral distribution described by the function g−1f , provided g possesses certain properties (which ensure in
particular the invertibility of Tn(g) for all n) and the following topological conditions are met: the essential
range of g−1f , defined as the union of the essential ranges of the eigenvalue functions λj(g−1f), j = 1, . . . , s,
does not disconnect the complex plane and has empty interior. This result generalizes the one obtained in [1],
concerning the non-preconditioned case g = 1.
Numerical experiments confirm the theoretical analysis and suggest the choice of optimal GMRES precondi-
tioning techniques to be used for the considered linear systems. Moreover, the obtained results can be used
for the spectral analysis of the Preconditioned Hermitian/Skew-Hermitian Splitting (PHSS) method applied to
multilevel block Toeplitz linear systems with a Hermitian positive definite multilevel block Toeplitz matrix as
a preconditioner [3].
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Local Fourier Analysis of Pattern Structured Operators

M. Bolten, K. Kahl, H. Rittich
Applied Computer Science Group University of Wuppertal

Multigrid methods [5] are used to compute the solution u of the system of equations

Lu = f ,

where L is typically a discretization of a partial different equations (PDE) and f a corresponding, given right
hand side. Local Fourier Analysis (LFA) [2, 5, 6] is well known to provide quantitative estimates for the speed
of convergence of multigrid methods, by analyzing the involved operators in the frequency domain.

For the initial formulation of LFA [1] it was crucial to assume that all involved operators have constant
coefficients. For many PDE operators the coefficients vary continuously in space. Thus if the grid is fine
enough the discrete operator L will only vary slightly between neighboring grid points and hence can be well
approximated by an operator with locally constant coefficients. Thus constant coefficient are often reasonable
assumption.

However, when analyzing more complex problems or even the multigrid method as a whole this assumption
is too restrictive. Interpolation and restriction operators typically act differently on variables that have a coarse
grid representative and those who do not have one. Another example are patter relaxation schemes like the
Red-Black Gauß-Seidel method where red points of the grid are treated differently from the black ones.

It is possible to analyze these cases [3, 4] when allowing for interaction of certain frequencies (see also [5, 6]).
Even more, it turns out that when we allow for more frequencies to interact we can analyze operators given by
increasingly complex patterns. In our talk we will illustrate a general framework for analyzing pattern structured
operators, i.e., operators whose action is invariant under certain shifts of the input function. Furthermore, we
discuss different applications.
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Fast Recovery and Approximation of Hidden Cauchy Structure

Jörg Liesen, Robert Luce
TU Berlin

A Cauchy matrix C(s, t) ∈ Cm,n is defined by n +m data points s ∈ Cm, t ∈ Cn satisfying si 6= tj for all
i, j, the Cauchy points, via the relation

C(s, t) = [cij ] :=

[
1

si − tj

]
.

One can take advantage of the peculiar structure of Cauchy matrices, for example when computing matrix
vector products (“the fast multipole method”) or computing an LU factorization, resulting in algorithms that
may be faster than general purpose algorithms by an order of magnitude. These algorithms require that the
Cauchy points s, t are explicitly given.

In this contribution we first study the problem of recovering the Cauchy points s, t, if only the entries of
C(s, t) are known. We give a simple O(m + n) algorithm for that task. Hence it can be checked in O(mn),
whether any given matrix is a Cauchy matrix. The second problem we study in this work is approximating a
given matrix A ∈ Cm,n with a Cauchy matrix. For this one would ideally like to solve the nonlinear problem

min
s∈Cm,t∈Cn

‖C(s, t)−A‖F . (1)

We assume aij 6= 0 for all i, j, which is guaranteed when A is a Cauchy matrix.
Instead of solving the presumably difficult problem (1), we solve the ordinary linear least squares problem

min
s∈Cm,t∈Cn

‖D(s, t)−A[−1]‖F , (2)

where D(s, t) := [si − tj ], and the superscript [−1] denotes the elementwise inverse of a matrix. We derive an
O(mn) algorithm for the optimal solution of (2). Note that the complexity of our algorithm is linear in the
input, and is thus of optimal complexity. Further we prove approximation bounds that relate the solutions of
(1) and (2). We pay special attention to the problem of approximating Cauchy points s, t from a given noisy
Cauchy matrix, i.e. where A = C(s, t) +N , and the matrix N represents a source of data uncertainty.
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Parallel Tensor Sampling

Lars Grasedyck, Christian Löbbert
Institut für Geometrie und Praktische Mathematik, RWTH Aachen

We consider the problem to reconstruct a tensor in the class of hierarchical low rank tensors from a small
number of samples. The number of samples is proportional to the number of degrees of freedom in the respective
tensor format [1], but there is in general no guarantee that the tensor can be reconstructed unless a certain
restricted isometry property is assumed. Practical examples provide evidence that the reconstruction works
in general pretty good, e.g. in the case of a parametric elliptic PDE where many parameters may enter into
the diffusion coefficient, the right-hand side, the boundary conditions or the domain itself [2]. In such a case
the method is competitive with, e.g. adaptive sparse grids or quasi Monte Carlo. Our aim is to parallelize
the sampling process. Unlike for Monte Carlo methods, our sampling is sequential in nature and we modify it
to allow several levels of parallelism: We can either apply parallelism for a small number of samples (∼ 100)
without any additional overhead, for a medium number of samples (∼ 10000) with a mild overhead, or finally a
complete parallelism for all samples (� 10000) albeit with a considerable overhead [3]. The overhead does not
influence the runtime behaviour but rather the total energy consumption. We thus have three gears for three
levels of parallelism ranging from energy efficient (first gear) to high speed (third gear).

References
[1] J. Ballani, L. Grasedyck, M. Kluge. Black Box Approximation of Tensors in Hierarchical Tucker Format.

Num. Lin. Alg. Appl. 438(2): 639–657 (2013).

[2] J. Ballani, L. Grasedyck: Hierarchical tensor approximation of output quantities of parameter-dependent
PDEs. Preprint 385, IGPM, RWTH Aachen, http://www.igpm.rwth-aachen.de/preprint.

[3] L. Grasedyck, C. Löbbert: Parallel Tensor Sampling in the Hierarchical Tucker Format. In preparation.

S17 Friday, March 27 11:30-12:10 (Masaccio Room) Grasedyck

GAMM 2015 30



Multigrid methods for tensor structured problems

Matthias Bolten∗, Karsten Kahl∗, Sonja Sokolovic∗
∗Bergische Universität Wuppertal

We look at linear systems whose matrix is related to a tensor structure of the kind A =
∑

i

⊗
j E

j
i . These

problems are found, e.g., in stochastic Markov chain models or in the solution of high-dimensional Poisson
equations. Due to the tensor structure of the models, the dimension of the operator A grows rapidly for larger
models. So the tensor structure has to be exploited for solving these systems efficiently. Multigrid methods
have proven to be well-suited for these kind of problems, e.g., the Poisson equation. To be able to also use
multigrid methods for high-dimensional models we build a multigrid method which keeps the tensor structure
intact to guarantee computational savings on all grids. We investigate the question what kind of smoothing and
coarsening have to be chosen to guarantee a nice convergence in this case and present an approach to adapt the
algebraic multigrid framework to this tensor setting using tensor truncation techniques.
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Hierarchical tensor approximation of parameter-dependent PDEs

Jonas Ballani
EPF Lausanne

Parametric PDEs appear in a large number of applications, as e.g. in uncertainty quantification or op-
timisation. Typically, the amount of data to approximate and represent the solution scales exponentially in
the parameter dimension. Therefore, a crucial task is to develop special numerical techniques that rely on
data-sparsity in order to cope even with high parameter dimensions. In this talk, we will discuss low-rank
tensor techniques that allow to reduce the complexity to a linear dependence on the parameter dimension. In
particular, our aim is to adaptively construct an approximation of the solution in the hierarchical tensor format
from a relatively small set of data samples. Once this approximation from an offline computation is available,
the evaluation of quantities of interest becomes a cheap online task. Moreover, the explicit tensor representation
can be used to compute stochastic properties of the solution in a straightforward way. The potential of this
approach is illustrated by numerical examples.

This is joint work with Lars Grasedyck (RWTH Aachen) and Daniel Kressner (EPF Lausanne).
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On the block and global methods for linear systems with multiple
right hand sides

A. Frommer, S. Rashedi, g. Ebadi
Bergische Universität Wuppertal Germany,

Tabriz University, Iran

We present new block and global methods for solving large nonsymmetric linear systems of equations with
multiple right-hand. Dealing with many right hand sides at the same time allows to use multiplications of a
sparse matrix times with block-vectors which are particularly efficient on current processor architectures.

The block version of BiCGSTAB introduced in [1] may suffer from numerical instability when the number of
right-hand sides is large and we improve numerical stability by using a QR- factorization of the descent and/or
the residual matrix. We also compare these new implementations with the global BiCGSTAB method, presented
in[1]. Moreover, as observed in [2], for problems arising from partial differential equations and having complex
eigenvalues, the block BiCGSTAB and global BiCGSTAB methods have a tendancy to not work well. We
therefore introduce a new version of block BiCGSTAB and global BiCGSTAB in the spirit of the BICGSTAB2
method known for single right hand sides.

Several numerical examples demonstrate that the different variants of the global methods can achieve a
smoothed residual and may be more competitive than the block solvers.
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